Assessing Cerebral Oxygenation and Intracranial Pressure Using Noninvasive Methods

Michael Wolf, M.D.
Assistant Professor of Pediatrics
Division of Critical Care Medicine
Monroe Carell Jr. Children’s Hospital at Vanderbilt
We will discuss noninvasive techniques to assess intracranial pressure and cerebral blood flow

– Potential adjuncts to more established clinical methods

– Interesting areas of discovery

– NOT a substitute for standard-of-care invasive intracranial monitoring
Bedside Assessment

What is going on in this patient’s head?

Roadmap

• **Intracranial pressure (ICP) assessment**
 – Physical examination and imaging
 – Pupillometry
 – Optic nerve ultrasound

• **Blood flow, autoregulation, and oxygenation**
 – Transcranial doppler (TCD)
 – Near Infrared Spectroscopy (NIRS)
 – Computed indices
 • Extra data from existing invasive sources

• **Multimodal Monitoring**
 – EEG
 – New technology
Cerebrovascular Physiology: Basic Review

Pinto et al, Intracranial Hypertension, Fundamentals of Neurosurgery, 2019

https://basicmedicalkey.com/neurosurgical-and-neurological-emergencies-for-surgeons
Cerebrovascular Physiology: Basic Review

Noninvasive Assessment of Intracranial Pressure
Physical Examination: Still Relevant

Fernando et al, *Diagnosis of elevated intracranial pressure in critically ill adults: systematic review and meta-analysis*. BMJ, 2019

Results

<table>
<thead>
<tr>
<th>Physical examination signs</th>
<th>Sensitivity (percent, 95% CI)</th>
<th>Specificity (50, 100)</th>
<th>Evidence quality (GRADE score)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any pupillary dilation</td>
<td></td>
<td></td>
<td>★★★★ Moderate</td>
</tr>
<tr>
<td>Motor posturing</td>
<td></td>
<td></td>
<td>★★★☆ Low</td>
</tr>
<tr>
<td>Glasgow coma scale ≤8</td>
<td></td>
<td></td>
<td>★★★☆ Low</td>
</tr>
</tbody>
</table>

Computed tomography signs

<table>
<thead>
<tr>
<th>Computed tomography signs</th>
<th>Sensitivity (percent, 95% CI)</th>
<th>Specificity (50, 100)</th>
<th>Evidence quality (GRADE score)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basal cisterns absent or compressed</td>
<td></td>
<td></td>
<td>★★★★ Moderate</td>
</tr>
<tr>
<td>Midline shift >0 mm</td>
<td></td>
<td></td>
<td>★★★★ Moderate</td>
</tr>
<tr>
<td>Midline shift >5 mm</td>
<td></td>
<td></td>
<td>★★★☆ Moderate</td>
</tr>
<tr>
<td>Midline shift >10 mm</td>
<td></td>
<td></td>
<td>★★★★ High</td>
</tr>
<tr>
<td>Marshall score ≥3</td>
<td></td>
<td></td>
<td>★★★☆ Low</td>
</tr>
<tr>
<td>Marshall score ≥4</td>
<td></td>
<td></td>
<td>★★★☆ Low</td>
</tr>
<tr>
<td>Marshall score ≥5</td>
<td></td>
<td></td>
<td>★★★☆ Low</td>
</tr>
</tbody>
</table>
Limitations of CT Scans in Trauma

- Single center retrospective review
- 280 children with severe TBI
- 68 w/ normal admission head CT
 - 9 received ICP monitors
 - 7 of 9 (77.8%) had increased ICP within 24 h of monitoring

“Excluding the possibility of elevated ICP on the basis of an initial (0-6 hr after injury) CT examination of the brain is not suggested in comatose pediatric patients”

Pupillometry: Enhanced Physical Exam

• Neurologic pupillary index (NPI)
 – Computed index (0-5; abnormal if <3)
 • Pupillary constriction, latency, velocity of constriction, dilation

youtube.com, courtesy of NeurOptics
Pupillometry: Enhanced Physical Exam

- NPi correlates with ICP after TBI
 - 54 adults with severe TBI, ICP monitors
 - Cumulative time burden with abnormal NPI correlates with poor outcome (GOS)

Jahns et al, Critical Care, 2019
Optic Nerve Sheath Diameter

- Sonographic optic nerve sheath diameter (ONSD) correlates with ICP ($r = 0.72$) \(^1\)

- ONSD is highly predictive of ICP ≥ 20
 - Pooled AUROC 0.94 [0.91-0.96] \(^2\)

1. Wang et al, JAMA Ophthalmology, 2018
2. Fernando et al, BMJ, 2019
Optic Nerve Sheath Diameter

• ONSD may be useful in monitoring patients with acute liver failure (ALF)

• Prospective study of 74 pediatric patients with ALF
 – ONSD predictive of hepatic encephalopathy
 – ONSD > 5.1 mm predicts poor outcome (death without liver transplant)
 • AUROC 0.82

Das et al, Liver Int, 2019

Wang et al, JAMA Ophthalmology, 2018
Noninvasive Assessment of Cerebral Blood Flow, Autoregulation, and Brain Oxygenation
Transcranial Doppler (TCD)

- Elevated ICP
 - Pulsatility Index (PI)
 - (Vs-Ved)/Vm
- Vasospasm:
 - V_{mca}, Lindegaard’s ratio
 - (Vmca / Vica)
- Static rate of autoregulation = Autoregulatory Index (ARI)
 - Impaired in 25-80% of pediatric TBI patients
 - Abnormal in ~17% of children with diabetic ketoacidosis
- ↑cerebral blood flow velocity associated with worse outcome in children after global hypoxic-ischemic insult

High ICP after AVM rupture:
- Increased MCA flow velocity and PI

LaRovere et al, J Ultrasound Med, 2015

1. LaRovere et al, Neurotrauma, 2016
2. Ma et al, PCCM, 2014
3. Lovett et al, Resuscitation, 2017
Transcranial Doppler (TCD)

- 160 children with cerebral malaria in Democratic Republic of the Congo
 - Impaired autoregulation in 80%
 - 24% mortality
 - Neurologic deficits in 21% of survivors
 - Early (day 1-3) impairment of autoregulation associated with neurologic sequelae and death
 - Specific TCD findings associated with outcome

Normal, Microvascular Obstruction, Hyperemia

Vasospasm, Low Flow, Posterior Hyperemia (IPH)

Table V. Predicted probabilities (with 95% CIs) of neurologic sequelae or death in children with cerebral malaria in each TCD diagnostic group

O’Brien et al, Journal of Pediatrics, 2018
Transcranial Doppler (TCD)

TCD predicts ↑ICP (≥ 20)

• Pulsatility index may detect ICP ≥ 20
 – AUROC 0.55-0.72

• TCD-ABP methods predict ICP≥ 20
 – Pooled AUROC: 0.85 [0.78-0.91]

Fernando et al, Diagnosis of elevated intracranial pressure in critically ill adults: systematic review and meta-analysis. BMJ, 2019
How We Use TCD

- Pediatric Neurocritical Care Research Group survey
 - 27/29 (93%) of centers used TCD
 - Variety of conditions

<table>
<thead>
<tr>
<th>Condition</th>
<th>No. of Hospitals</th>
<th>Clinical Use % Total (95% CI)</th>
<th>Research Use % Total (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intracranial hemorrhage</td>
<td>20</td>
<td>74.1 (55.3–86.8)</td>
<td>22.2 (10.6–40.8)</td>
</tr>
<tr>
<td>Arterial ischemic stroke</td>
<td>14</td>
<td>51.2 (34.0–69.3)</td>
<td>14.8 (5.9–32.5)</td>
</tr>
<tr>
<td>Traumatic brain injury</td>
<td>10</td>
<td>37.0 (21.5–55.8)</td>
<td>29.6 (15.9–48.5)</td>
</tr>
<tr>
<td>Cerebral vascular malformation</td>
<td>9</td>
<td>33.3 (18.6–52.2)</td>
<td>11.1 (3.9–28.1)</td>
</tr>
<tr>
<td>Mechanical circulatory support</td>
<td>8</td>
<td>29.6 (15.9–48.5)</td>
<td>18.5 (8.2–36.7)</td>
</tr>
<tr>
<td>Cardiac arrest</td>
<td>7</td>
<td>25.9 (13.2–44.7)</td>
<td>18.5 (8.2–36.7)</td>
</tr>
<tr>
<td>Hepatic encephalopathy</td>
<td>6</td>
<td>22.2 (10.6–40.8)</td>
<td>14.8 (5.9–32.5)</td>
</tr>
<tr>
<td>Cerebral venous infarction</td>
<td>5</td>
<td>18.5 (8.2–36.7)</td>
<td>18.5 (8.2–36.7)</td>
</tr>
<tr>
<td>Intraoperative monitoring</td>
<td>4</td>
<td>14.8 (5.9–32.5)</td>
<td>7.4 (2.1–23.4)</td>
</tr>
<tr>
<td>Other (meningitis, hydrocephalus)</td>
<td>4</td>
<td>14.8 (5.9–32.5)</td>
<td>11.1 (3.9–28.1)</td>
</tr>
<tr>
<td>Sepsis</td>
<td>3</td>
<td>11.1 (3.9–28.1)</td>
<td>11.1 (3.9–28.1)</td>
</tr>
<tr>
<td>Diabetic ketoacidosis</td>
<td>2</td>
<td>7.4 (2.1–23.4)</td>
<td>7.4 (2.1–23.4)</td>
</tr>
<tr>
<td>None/uncertain</td>
<td>4</td>
<td>14.8 (5.9–32.5)</td>
<td>22.2 (10.6–40.8)</td>
</tr>
</tbody>
</table>

LaRovere et al, *PCCM*, 2019
How We Use TCD

- Pediatric Neurocritical Care Research Group survey
 - Some centers use TCD to change management
 - Problematic? – *unclear impact on outcomes*

LaRovere et al, *PCCM*, 2019

TABLE 4. Changes in Critical Care Management Based Upon Transcranial Doppler Examinations Performed for Clinical Reasons Across 27 Pediatric Neurocritical Care Centers

<table>
<thead>
<tr>
<th>Change in Clinical Management</th>
<th>No. of Hospitals</th>
<th>Percent of Total (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perform head imaging</td>
<td>18</td>
<td>66.7 (47.8–81.4)</td>
</tr>
<tr>
<td>Manipulation of cerebral perfusion pressure with fluids or vasopressors</td>
<td>13</td>
<td>48.2 (30.7–66.0)</td>
</tr>
<tr>
<td>None/uncertain</td>
<td>7</td>
<td>25.9 (13.2–44.7)</td>
</tr>
<tr>
<td>Neurosurgical or endovascular procedure</td>
<td>6</td>
<td>22.2 (10.6–40.8)</td>
</tr>
<tr>
<td>Manipulation of mechanical ventilation</td>
<td>5</td>
<td>18.5 (8.2–36.7)</td>
</tr>
<tr>
<td>Counseling of families</td>
<td>4</td>
<td>14.8 (5.9–32.5)</td>
</tr>
<tr>
<td>Placement of intracranial pressure monitor</td>
<td>3</td>
<td>11.1 (3.9–28.1)</td>
</tr>
<tr>
<td>Elevation of head of bed</td>
<td>1</td>
<td>3.7 (0.7–18.3)</td>
</tr>
<tr>
<td>Change in anticoagulation</td>
<td>1</td>
<td>3.7 (0.7–18.3)</td>
</tr>
</tbody>
</table>
How We Use TCD

- Pediatric Neurocritical Care Research Group survey

TABLE 5. Emerging Clinical Applications for Transcranial Doppler in the PICU

<table>
<thead>
<tr>
<th>Trigger</th>
<th>Purpose</th>
<th>When to perform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vasoasmp on imaging of condition associated with high risk of vasospasm (e.g., TBI, SAH, subarachnoid infection/inflammation)</td>
<td>May affect therapeutic strategies (initiation or advancement) in symptomatic patients</td>
<td>Within 72 hr of admission for TBI and aneurysmal SAH, and daily thereafter (23, 24)</td>
</tr>
<tr>
<td>Acute stroke symptoms with intracranial arterial stenosis on imaging with or without acute infarction</td>
<td>To evaluate progression or regression of intracranial steno-occlusive disease</td>
<td>Within 24 hr stroke symptom onset</td>
</tr>
<tr>
<td>To monitor effects of treatment (medical, endovascular)</td>
<td>Serial measurements for known intracranial arterial stenosis</td>
<td></td>
</tr>
<tr>
<td>To provide longitudinal follow-up</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TBI with known BCVI or any unmonitored child with TBI and Glasgow Coma Scale ≤ 8</td>
<td>To evaluate for indirect evidence of increased intracranial pressure</td>
<td>Within 72 hr of admission</td>
</tr>
<tr>
<td>To detect emboli which may be associated with increased risk of BCVI-related stroke (36, 37)</td>
<td>Frequency and duration may be guided by patient clinical presentation and early clinical course</td>
<td></td>
</tr>
<tr>
<td>To detect disordered perfusion (oligemia, hyperemia) which may guide BP/cerebral perfusion pressure management</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Limitations and caveats

- Criteria for vasospasm (age-dependent cerebral blood flow velocities, Lindegaard ratio) are not established for children
- Aneurysmal SAH is rare in children and duration of risk period for vasospasm is not well characterized
- Clinically meaningful changes in cerebral blood flow velocity in pediatric stroke are not defined
- Results in TBI need interpretation in the context of pharmacologic management of BP, head of bed position
- Clinically meaningful emboli burden is not defined

Use depends on local resources, expertise in performing and interpreting studies

LaRovere et al, *PCCM*, 2019
Near-Infrared Spectroscopy (NIRS)

- **Regional oxyhemoglobin saturation (rSO$_2$)**
 - Gross estimate of cerebral blood flow, oxygenation

- **After TBI in adults:**
 - rSO$_2$ correlates positively with CPP, negatively with ICP
 - Mirrors changes in invasive brain tissue oxygen tension (PbO$_2$)

- **NIRS-derived Autoregulation Indices**
 - Total hemoglobin reactivity index (THx)
 - Cerebral oximetry index (COx)
 - Tissue oxygen reactivity index (TOx)

- **Strong correlation ($R^2 = 0.81$) between NIRS rSO$_2$ and CT perfusion-derived cerebral blood volume (but not flow)**

- Mathieu et al, J Neurosurg Anesthesiol, 2019
- Jakkula et al, Critical Care, 2019
Near-Infrared Spectroscopy (NIRS)

- In children with DKA, abnormal \(rSO_2 \) (>80%) seen in 17 of 19 patients
 - 2-27 hours into treatment course
 - Irrespective of fast vs. slow fluid administration

Computed Indices of Autoregulation

• Computational techniques meant to maximize clinical utility from monitor data
 – Not non-invasive per se...
Computation of Indices of Autoregulation

- **Pressure reactivity index (PRx)**
 - *Adult TBI*: Impaired autoregulation (PRx > 0.3) associated with unfavorable outcome
 - Zeiler et al, Neurotrauma, 2017
 - *Pediatric TBI*: longer duration of PRx > 0.2 associated with unfavorable outcome
 - Hockel et al, Acta Neurochir, 2017
New Approaches and Multimodal Monitoring
Continuous EEG: Beyond Seizures

- Periodic discharges ("interictal continuum")
 - Possibly indicative of neuronal hypoxia/ichemia
- **Quantitative EEG:**
 - Delta percentage correlates with CBF after focal ischemia
 - Alpha-delta ratio (ADR) correlates with CPP
 - 10% ↓ ADR after subarachnoid hemorrhage: 100% sensitive, 76% specific for delayed cerebral ischemia
- **Intracranial EEG:**
 - Seizures can precede scalp EEG findings
 - Abnormalities can precede focal infarct and global cerebral edema

 - Appavu et al, Neurocrit Care, 2019
 - Appavu et al, PCCM, 2019
Cerebral Oximetry Index (COx)

- Slow-wave correlation between rSO2 and MAP (lower = intact autoregulation)
- Optimal MAP = MAP at minimum COx
- In comatose adults with acute brain injury (varying diagnosis):
 - >80% time outside optimal MAP associated with higher 90-day mortality (HR 2.13 [0.04-4.41])

Rivera-Lara et al, Critical Care Medicine, 2019
Multimodal Approach: Calibrating TCD with ICP and ABP

Simultaneous ICP, arterial blood pressure (ABP), and MCA velocity (CBFV) → Noninvasive ICP estimate (nICP)
- Automated, model-based analysis
- Can be done in real time

nICP is predictive of actual ICP in children and young adults
- Still requires an arterial line
- Semi-noninvasive?

Fanelli et al, J Neurosurg Pediatr, 2019
Novel NIRS Device

- Diffuse correlation spectroscopy (DCS) measures cerebral blood flow
 - Non-invasive
 - Bedside compatible
 - Uses near-infrared light
 - High sampling rate for cardiac pulse measurements
- NIRS measures cerebral hemoglobin concentration

Courtesy of Alexander Ruesch
Induced ICP changes in non-human primate model

- Reference intraparenchymal ICP measurement
- Continuous DCS and NIRS measurements at 50 Hz

- Induced ICP changes by fluid pressure through a catheter into the lateral ventricle
 - Baseline changes between 5 and 40 mmHg
 - Oscillation by fluid reservoir rotation for frequency analysis

Courtesy of Alexander Ruesch
Novel NIRS Device

- Oxygenated hemoglobin changes (ΔHbO) follow ICP changes during slow oscillation
 - Transfer function analysis translates ΔHbO into ΔICP
 - High temporal resolution
 - 7 non-human primates

Cardiac pulsation in cerebral blood flow (ΔCBF) changes shape under elevated ICP
- Machine learning waveform analysis
- Estimates ICP offset
- 5 non-human primates

Courtesy of Alexander Ruesch
Novel NIRS Device

Ongoing Validation in PICU Patients:
External ventricular drain closure captured in HbO

Courtesy of Alexander Ruesch
Conclusions

• Many promising non-invasive modalities exist to assess ICP and cerebral blood flow, oxygenation
• Further development and validation is needed to standardize their use in neurocritical care
 – Invasive ICP monitoring remains standard of care in severe TBI
 – Neurologic outcome prediction remains a challenge after acute brain injury/illness
 – Novel techniques may further inform a proactive rather than reactive strategy
 • i.e. Event prediction, autoregulation-targeted therapy
Acknowledgements

• Vanderbilt University Medical Center
 – Lori Jordan, MD, PhD

• Carnegie Mellon University
 – Jana Kainerstorfer, PhD
 – Alexander Ruesch

• University of Pittsburgh Medical Center
 – Robert Clark, MD
 – Ericka Fink, MD
 – Patrick Kochanek, MD
 – Michael McDowell, MD
 – Jay Rakkar, MD
 – Dennis Simon, MD
 – Elizabeth Tyler-Kabara, MD, PhD